Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Tomofumi Hamamura

Tomofumi Hamamura

University of Bordeaux, France

Title: Dye-sensitized solar cells using ethynyl-linked porphyrin trimers for nir photoelectric conversion

Biography

Biography: Tomofumi Hamamura

Abstract

Dye-sensitized solar cells (DSSCs) have widely attracted much attention as promising candidates for low-cost next-generation solar cells. For the improvement of the power conversion efficiency of DSSCs, it is important to utilize near-infrared (NIR) light and to induce efficient charge-separation at the interface between dyes and TiO2. The charge-separation process is known to be affected by the adsorption geometry of dyes on the TiO2 surface. In this study, we focused on ethynyl-linked porphyrin trimers as NIR-light harvesting dyes, and investigated the effect of the adsorption geometry of the trimers on the photovoltaic properties of the DSSCs. Some trimers which are different in the number and position of anchoring groups were synthesized for controlling their adsorption geometry. Photo-anodes were prepared by immersing TiO2 electrodes into DMF solution of these compounds containing deoxycholic acid as co-adsorbent. The difference in the number of anchoring groups drastically changed the adsorbed amount of the trimers on the TiO2 surface. On the other hand, the difference in the position of anchoring groups was found to affect not only the adsorbed amount of the trimers, but also charge-separation efficiency. Among these compounds, the trimer with anchoring groups in the long-axial direction showed the highest IPCE value in NIR region (47% at 840 nm). In this talk, we will discuss the difference in the photovoltaic properties of the DSSCs using these compounds in detail.