Simon Fafard
Azastra Opto Inc., Canada
Title: Laser power conversion efficiencies exceeding 60%, featuring strong photon recycling, in ultra-thin GaAs n/p junctions based on high-photovoltage vertical epitaxial heterostructure architectures
Biography
Biography: Simon Fafard
Abstract
Optical to electrical power converting semiconductor devices are achieved with breakthrough performance using a Vertical Epitaxial HeteroStructure Architecture (VEHSA design). The devices allow achieving a near-optimum responsivity, an improved photovoltage output compared to p/n junctions with standard thicknesses and low series resistance and shunting effects yielding high fill-factor values. The ultrahigh conversion efficiencies were obtained by monolithically integrating several thin GaAs photovoltaic junctions tailored with submicron absorption thicknesses and grown in a single crystal by epitaxy. Unique experimental evidence of the significant impact of photon recycling in these photovoltaic devices has been observed. The devices exhibited a near optimum responsivity of up to 0.645A/W for tuned excitation conditions or at high optical intensities for spectral detuning values of up to ~25 nm and corresponding to an external quantum efficiency of ~94%. These devices have now available as products manufactured by Broadcom and recent progresses will be covered, including: -The highest optical to electrical efficiency ever achieved; -The highest output powers ever reported for a high-efficiency monolithic PV cell with 5.87W of converted output from a CW laser; -The highest efficiencies ever reported for any types of optical to electrical power conversion devices simultaneously combining high photovoltage and output powers (> 5W at > 7V with > 60% efficiency and > 3W at > 14V with > 60% efficiency); -The highest efficiency ever reported of 61.8% with a significantly detuned optical input; -The highest photovoltage ever reported for monolithic photovoltaic semiconductor heterostructures with measured Voc > 23V; The thinnest p/n junctions ever implemented successfully with highperformance, with ultra-thin GaAs bases as small as 24 nm.